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Abstract
In field theory the scattering about spatially extended objects, such as solitons,
is commonly described by small amplitude fluctuations. Since soliton
configurations often break internal symmetries, excitations exist that arise from
quantizing the modes that are introduced to restore these symmetries. These
modes represent collective distortions and cannot be treated as small amplitude
fluctuations. Here, we present a method to embrace their contribution to the
scattering matrix. In essence, this allows us to compute the decay widths of
such collective excitations. As an example, we consider the Skyrme model for
baryons and explain that the method helps to solve the long-standing Yukawa
problem in chiral soliton models.

PACS numbers: 03.70.+k, 12.20.−m

1. Statement of the problem

Phase shifts, δ, are essential tools to probe external forces in field theory because—among
other applications—they describe the response to background potentials. In turn they play an
important role for determining Casimir (or vacuum polarization) energies,

Evac ∼
∫

dk

2π
ωk

d

dk
δ(k) + Ec.t., (1)

of extended objects, such as solitons �cl. Usually, these phase shifts are computed from small
amplitude fluctuations about �cl. Solitons often break symmetries of the fundamental theory.
For example, the Skyrme hedgehog soliton is not rotationally invariant. This applies to both
coordinate and flavor rotations. In turn this gives rise to large amplitude fluctuations in these
directions. The symmetries are restored by canonically quantizing collective coordinates that
parameterize the orientation of the soliton in the corresponding spaces. The so-constructed
states correspond to resonances of the soliton and their Yukawa exchanges significantly
contribute to the scattering data. Yet, this important contribution is not necessarily captured
by the small amplitude fluctuations. Here, we will exemplify their incorporation within the
Skyrme model.
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There is a serious problem for computing the properties of resonances soliton models.
Commonly, the coupling of resonances to mesons is described by a Yukawa interaction of the
generic structure

�int[ψB ′ , ψB, φ] ∼ g

∫
d4xψ̄B ′φψB, (2)

where B ′ is the resonance that might decay into the (ground) state B and meson φ and
g is a coupling constant. It is crucial that this interaction is linear in φ! If φ is
pseudoscalar, this interaction yields the decay width (residuum of the scattering amplitude)
�(B ′ → Bφ) ∝ g2|�pφ|3, with �pφ being the momentum of the outgoing meson. Soliton
models, however, are based on action functionals of only meson degrees of freedom, � = �[�].
They contain classical (static) soliton solutions, �sol, that are identified as baryons whose
interaction with the mesons is described by the (small) meson fluctuations about the soliton:
� = �sol + φ. By pure definition of the stationary condition, the expansion of �[�]
about �sol does not have a term that is linear in φ to be interpreted as Yukawa interaction,
equation (2). This puzzle has become famous as the Yukawa problem in soliton models.
Hence, the resonance properties must be extracted from meson baryon scattering amplitudes.
In soliton models two-meson processes acquire contributions from the second-order term

�(2) = 1

2
φ · δ2�[�]

δ2�

∣∣∣∣
�=�sol

· φ. (3)

This also represents an expansion in N, the number of internal degrees of freedom (color in
strong interactions): � = O(N) and �(2) = O(N0). Terms O(φ3) vanish when N → ∞.
Thus, �(2) contains all large-N information about the contribution of resonances to scattering
data.

The large-N expansion is systematic but a low order truncation is not necessarily reliable
at the physical point and it is very challenging to reliably compute subleading contributions.
Presumably resonance exchanges contribute significantly in that regime. To probe the
reliability of the computed resonance contributions we transform the above statement into
a consistency condition: for N → ∞ any valid computation of hadronic decay widths in
soliton models must identically match the result obtained from �(2). Unfortunately, the most
prominent baryon resonance, the � isobar, becomes degenerate with the nucleon as N → ∞.
It is stable in that limit and its decay is not subject to the just described litmus test. The
situation is more interesting in soliton models for flavor SU(3). In the so-called rigid rotator
approach (RRA), that generates baryon states as (flavor) rotational excitations of the soliton,
exotic resonances emerge that dwell in the anti-decuplet representation of flavor SU(3) [1].
The most discussed (and disputed) such state is the 	+ pentaquark with zero isospin and
strangeness S = +1. When N → ∞ the mass difference between anti-decuplet states and
the nucleon does not vanish. So the properties of 	+ predicted from any model treatment
must also be seen in the quantizing of the strangeness degrees of freedom based on the
harmonic approximation, �(2). This (seemingly alternative) quantization is called the bound
state approach (BSA) for reasons that will become obvious later. The above-discussed litmus
test requires that the BSA and RRA give identical results for 	+ as N → ∞. This did not
seem to be true and it was argued that the prediction of pentaquarks would be a mere artifact
of the RRA [2]. We will show that this conclusion is premature. Furthermore, the comparison
between the BSA and RRA provides an unambiguous computation of pentaquark widths: it
differs substantially from approaches [3] that identified the transition operators for 	+ → KN
from the axial current.

This presentation is based on [4] which should be consulted for further details.
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2. The model

For simplicity, we consider the Skyrme model [5] as a particular example for chiral soliton
models. However, we stress that our qualitative results generalize to all chiral soliton models
because these results solely reflect the treatment of the model degrees of freedom.

Chiral soliton models are functionals of the chiral field, U, the nonlinear realization of the
pseudoscalar mesons1, φa ,

U(�x, t) = exp

[
i

fπ

φa(�x, t)λa

]
, (4)

with λa being the Gell–Mann matrices of SU(3). We split the action into three pieces
� = �SK + �WZ + �SB. The first term represents the Skyrme model action,

�SK =
∫

d4x tr

{
f 2

π

4
[∂µU∂µU †] +

1

32ε2
[[U †∂µU,U †∂νU ]2]

}
. (5)

Here fπ = 93 MeV is the pion decay constant and ε is the Skyrme parameter. The two-flavor
version of the Skyrme model suggests ε = 4.25 to reproduce the �-nucleon mass difference2.
The QCD anomaly is incorporated via the Wess–Zumino action [7],

�WZ = − iN

240π2

∫
d5xεµνρστ tr[αµαναρασατ ], (6)

with αµ = U †∂µU . The flavor symmetry breaking terms are contained in �SB:

�SB = f 2
π

4

∫
d4x tr[M(U + U † − 2)], M = diag

(
m2

π ,m2
π , 2m2

K − m2
π

)
. (7)

We do not include terms that distinguish between pion and kaon decay constants even though
they differ by about 20% empirically. This omission is a matter of convenience and leads to
an underestimation of symmetry breaking effects [8] which approximately can be accounted
for by rescaling the kaon mass mK → mKfK/fπ . The action has a topologically non-trivial
classical solution, the famous hedgehog soliton

�sol ∼ U0(�x) = exp[i�λ · x̂F (r)], r = |�x| (8)

embedded in the isospin subspace of flavor SU(3). The chiral angle, F(r), solves the classical
equation of motion subject to the boundary condition F(0) − F(∞) = π ensuring unit
winding (baryon) number. In the RRA baryon states are generated by canonically quantizing
collective coordinates A ∈ SU(3) that describe the (spin) flavor orientation of the soliton,
A(t)U0(�x)A†(t). The resultant eigenstates may be classified according to SU(3) multiplets,
see [9] for a review.

3. Small amplitude fluctuations in the P-wave channel with strangeness

As motivated in section 1, we introduce fluctuations φ ∼ ηα(�x, t),

U(�x, t) =
√

U0(�x) exp

[
i

fπ

λαηα(�x, t)

] √
U0(�x), (9)

for the kaon fields [10]. Expanding the action in powers of these fluctuations yields �(2) at
first non-zero order. The P-wave mode is characterized by a single radial function(

η4 + iη5

η6 + iη7

)
P

(�x, t) =
∫ ∞

−∞
dω eiωtη(r, ω)x̂ · �τχ(ω). (10)

1 Repeated indices are summed as a, b, c, . . . = 1, . . . , 8, α, β, γ, . . . = 4, . . . , 7 and i, j, k, . . . = 1, 2, 3.
2 To ensure that the (perturbative) n-point functions scale as N1−n/2 [6] we substitute fπ = 93 MeV

√
N/3 and

ε = 4.25
√

3/N in the study of the N dependence.
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Figure 1. Left panel: large-N P-wave phase shifts with strangeness S = +1. The full line shows
the phase extracted from equation (11). Background and resonance phase shifts are defined in the
text. Right panel: the resonance phase shift for various N and mK = mπ .

In future we will omit the argument for the Fourier frequency. Upon quantization the
components of the two-component iso-spinor χ are elevated to creation and annihilation
operators. It is straightforward to deduce the Schrödinger-type equation

h2η(r) + ω [2λ(r) − ωMK(r)] η(r) = 0 with h2 = − d2

dr2
− 2

r

d

dr
+ Veff(r). (11)

The radial functions arise from the chiral angle F(r) and may be taken from the literature [10].
The equation of motion (11) is not invariant under particle conjugation ω ↔ −ω, and thus
different for kaons (ω > 0) and anti-kaons (ω < 0). This difference is caused by λ(r) 
= 0
which originates from �WZ. Equation (11) has a bound state solution (hence the notion bound
state approach) at ω = −ω� which equals the mass difference between the �-hyperon and
the nucleon in the large-N limit. As this energy eigenvalue is negative it corresponds to a
kaon, i.e. it carries strangeness S = −1. In the symmetric case (mK = mπ) the bound state
is the zero mode of SU(3) flavor symmetry. Since �WZ moves the potential bound state with
S = +1 to ω	 > mK we expect a resonance structure in that channel. The corresponding
phase shift is shown in the left panel of figure 1. No clear resonance structure is visible; the
phase shifts hardly reach π/2. The absence of such a resonance has previously led to the
premature criticism that there would not exist a bound pentaquark in the large-N limit [2].

4. Constraint fluctuations in the flavor symmetric case

We couple the fluctuations to the collective excitations by generalizing equation (9) to

U(�x, t) = A(t)
√

U0(�x) exp

[
i

fπ

λαη̃α(�x, t)

] √
U0(�x)A†(t). (12)

These fluctuations dwell in the intrinsic system as they rotate along with the soliton. The kaon
P-wave is subject to the modified integro-differential equation

h2η̃(r) + ω[2λ(r) − ωMK(r)]̃η(r) = −z(r)

[∫ ∞

0
r ′2 dr ′z(r ′)2λ(r ′)̃η(r ′)

]
×

[
2λ(r) − (ω + ω0)MK(r) − ω0

(
X2

	

ω	 − ω
+

X2
�

ω

)
(2λ(r) − ω0MK(r))

]
, (13)
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for the flavor symmetric case3. The radial function η̃(r) is defined according to equation (10)
and z(r) = √

4π
fπ√
	K

sinF(r)

2 is the collective mode wavefunction normalized with respect

to the moment of inertia for flavor rotations into the strangeness direction, 	K = f 2
π

∫
d3r

MK(r) sin2 F(r)

2 = O(N). The non-local terms reflect the constraint
∫

drr2z(r)MK(r)̃η(r) =
0 which avoids double counting of rotational modes in the strangeness direction. The
interesting coupling is

Hint = 2√
4π	K

diαβDγαRβ

∫
d3rz(r) [2λ(r) − ω0MK(r)] x̂i ξ̃γ (�x, t), (14)

where ξ̃a = Dabη̃b are the fluctuations in the laboratory frame that we actually detect in
KN scattering. The collective coordinates are parameterized via the adjoint representation
Dab(A) = 1

2 tr[λaAλbA
†] and the SU(3) generators Ra . Integrating out the collective degrees

of freedom induces the separable potential

|〈	|Hint|(KN)I=0〉|2
ω	 − ω

+
|〈�|Hint|(KN)I=0〉|2

ω� + ω
. (15)

These matrix elements concern the T-matrix elements in the laboratory frame. For the 	+

channel it is identical to the one in the intrinsic system [11]. Thus we may directly add the
exchange potential, equation (15), to the Hamiltonian for the intrinsic fluctuations. We define
matrix elements of collective coordinate operators,

〈	+|d3αβD+αRβ |n〉 =: X	

√
N

32
and 〈�|d3αβD−αRβ |p〉 =: X�

√
N

32
, (16)

to end up with equation (13). The first factor in the coefficient ω0 = 2
(

2√
	K

√
N
32

)2 = N
4	K

arises in the equation of motion because the potential, equation (15), is quadratic in the
fluctuations. The remaining (squared) factors stem from the definitions of X	,� and the
constant of proportionality in Hint. X	,� must be computed with the methods provided in [12]
but generalized to arbitrary (odd) N [4]. For N → ∞ we have X	 → 1 and X� → 0. From
the orthogonality conditions of the equation of motion (11) we straightforwardly verify that
in this limit

η̃(r) = η(r) − az(r) with a =
∫ ∞

0
drr2z(r)MK(r)η(r) (17)

solves equation (13). This is essential because, as z(r) is localized in space, η and η̃ have
identical phase shifts! Hence, the large-N consistency condition discussed in the introduction
is indeed satisfied. The physics becomes more transparent when considering the background
wavefunction η(r) that solves equation (13) for X	 ≡ X� ≡ 0, i.e. the collective excitations
are decoupled. We stress that η(r) is a purely large-N quantity that may be obtained by
demanding the BSA wavefunction to be orthogonal to the collective mode. In doing so, the
asymptotic behavior of η(r) gives the background phase shift shown in figure 1. Subsequently,
we may again switch on the exchange contributions, equation (15). The additional separable
potential augments the phase shift by

tan (δR(ω)) = �(ωk)/2

ω	 − ω + �(ω)
. (18)

Here, ω	 = N+3
4	K

is the RRA result for the excitation energy of 	. This phase shift exhibits
the canonical resonance structure with the width and the pole shift

�(ω) = 2kω0X
2
	

∣∣∣∣∫ ∞

0
r2 drz(r)2λ(r)η(r, ω)

∣∣∣∣2

, (19)

3 The more complicated case mK 
= mπ is at length discussed in [4].
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�(ω) = 1

2πω
P

∫ ∞

0
q dq

[
�(ωq)

ω − ωq

+
�(−ωq)

ω + ωq

] (
ωq =

√
q2 + m2

K

)
. (20)

We have numerically verified that in the large-N limit with X2
	 = 1, the phase shift from

equation (18) is identical to what is labeled resonance phase shift in figure 1 that we calculated
as the difference between the total (η) and background (η) phase shifts. It stems from a
completely different computation: while all phase shifts shown in figure 1 result solely from
large-N computations, equation (18) yields an N dependent phase shift that for N → ∞
reproduces the resonance phase shift. This clearly shows that contrary to earlier criticisms
[2] the large-N pentaquark channel indeed resonates! It furthermore suggests that the small
amplitude approach (3) might give insufficient results for scattering data.

5. Results

In figure 1, we show the resonance phase shift computed from equation (18) for various values
of N. First we observe that the resonance position quickly moves toward larger energies as
N decreases. This is mainly due to the strong N dependence of ω	: for N = 3 it is twice
as large as in the limit N → ∞. The pole shift � is quite small (some 10 MeV) so ω	 is
indeed a reliable estimate of the resonance energy. Second, the resonance becomes shaper
as N decreases. To discuss the quantitative results we now include flavor symmetry breaking
effects. Then, the resonance position changes to

ω	 = 1

2

[√
ω2

0 +
3�

2	K

+ ω0

]
+ O

(
1

N

)
, (21)

where � = O(N) is a functional of the soliton that is proportional to the meson mass difference,
m2

K − m2
π . The O (1/N) piece is sizable for N = 3 and we compute it in the scenario of

[12]. We then find ω	 ≈ 700 MeV; taking model dependences into account we expect the
pentaquark to be about 600–900 MeV heavier than the nucleon.

For the width calculations there are two principal differences to equation (19). First, the
interaction Hamiltonian acquires an additional term

H SB
int = (

m2
K − m2

π

)
diαβDγαD8β

∫
d3rz(r)γ (r)̃ξγ (�x, t)x̂i . (22)

The radial function γ (r) is again given in terms of the chiral angle [4]. Second, X� does not
vanish as N → ∞ and the R-matrix formalism is always two dimensional. Nevertheless, the
large-N solution is always of the form (17) and the BSA phase shift is recovered. The width
function turns to

�(ω) = 2kω0

∣∣∣∣∫ ∞

0
r2 drz(r)

[
2X	λ(r) +

Y	

ω0

(
m2

K − m2
π

)]
η(r, ω)

∣∣∣∣2

, (23)

where X	 and Y	 = √
8N/3〈	+|d3αβD+αD8β |n〉 are to be computed in the RRA approach

with full inclusion of flavor symmetry breaking effects.
This width function is shown (for N = 3) in figure 2 for 	 and its isovector partner 	∗.

The latter merely requires the appropriate modification of the matrix elements in equation (16).
The k3 behavior of the width function, as suggested by the model, equation (2), is reproduced
only right above threshold, afterwards it levels off. Somewhat surprising, the width of the non-
ground state pentaquark is smaller than that of the lowest lying pentaquark. Our particular
model yields �	 ≈ 40 MeV and �	∗ ≈ 20 MeV. We note that there are certainly model
ambiguities in these results.
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Figure 2. Model prediction for the width, �(ω) of 	+ (left) and 	∗+ (right) for N = 3 for three
values of the kaon mass. Note the unequal scales.

6. Conclusions

To exemplify the role that resonance exchanges play for the computation of scattering data in
soliton models we have discussed KN scattering in the S = +1 channel which contains the
potential [13] 	+ pentaquark, a state predicted as a flavor rotational excitation. Though the
approach via small amplitude fluctuations suggests otherwise, the 	 emerges as a genuine
resonance. A central result is the width function for 	 → KN. In the flavor symmetric case it
contains only a single collective coordinate operator and is thus very different from estimates
that extract an effective Yukawa coupling from the axial current matrix element [3]. Since our
approach matches the exact large-N result, we must conclude that those axial current scenarios
are erroneous [14] and that soliton models unlikely predict very narrow pentaquarks.
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